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ABSTRACT

A test program to determine the effectiveness of
flexible ring baffles as liquid slosh suppressors
was conducted. A comparison of flexible and
rigid ring baffles is presented in terms of liquid
damping, first mode sloshing resonant frequency,
and maximum baffle depth for no rotational slosh.
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INTRODUCTION

The stability of liquid fuel filled launch vehicles depends largely
on the suppression of propellant sloshing, particularly the first anti-
symmetrical liquid mode for which the resultant sloshing force and
overturning moments are the largest.

The sloshing problem has been thoroughly investigated. Many
types of baffles have been analytically studied and experimentally
examined to evaluate their effectiveness. The selection of the proper
baffle depends largely on the liquid resonant frequency as in many
vehicles the liquid resonant frequency must be carefully controlled to
prevent dynamic coupling with the various vehicle structural compo-
nents., In such a case the damping system employed must serve the
dual purpose of damping and altering the liquid resonant frequency.
Tank compartmentation or other means of raising the liquid natural
frequency may be employed in such cases. Typical results for liquid
sloshing in compartmented tanks have been presented in Ref. (1).
When the liquid resonant frequency is not critical, ring baffles pro-
vide good damping with a minimum of added weight to the vehicle
[ Refs. (2, 3, 4 and 5) present a fairly complete study of rigid ring
baffle damping]. Although the ring baffle damping-to-weight ratio is
considered acceptable, the total weight of the baffle represents a

fairly large amount of dead weight in launch vehicles with large tanks.
Lightweight flexible baffles have been suggested to decrease

the baffle weight. D. G. Stephens, NASA Langley Research Center,



prcsented data in Ref. (6) on damping obtained for various flexible
baffles in a rectangular tank. The relative damping (ratio of flexible
baffle damping to rigid baffle damping) obtained by Stephens indicated
that flexible baffles would not only reduce the baffle weight but would
also increase the liquid damping effectiveness. These interesting re-
sults lead to the experimental studies for flexible ring baffles pre-
sented in this paper. Whereas the log decrement damping reported
by Stephens were obtained from decay records, the data represented
herein is from force response curves obtained from a force excited,
liquid filled, cylindrical tank; furthermore, most of the data given

here is for baffles near the free surface.



TANK CONFIGURATION AND TEST PROCEDURE

The experimental equipment and procedures utilized in the
present work are similar to those employed in Ref. (7). For all tests,
the following data were recorded: total resultant liquid force on the
tank wall, tank excitation amplitude, and liquid slesh height. All the
tests were carried out in a 17.75 inch diameter tank. The tank was
made in two halves, each 17. 75 inches long and the baffle was clamped
between the flanges joining the tank halves, as shown in Figure 1.
With this configuration, the resulting damping and changes in natural
frequencies are fully attributed to the baffle. For all these tests the
bare wall tank {(no baffle) damping was neglected as it is very small,
at the translation excitation amplitudes tested, and the liquid goes
into rotation at the first antisymmetric resonant frequency.

The baffles examined were similar to those of Ref. (4), with
a width to radius ratio W/R = 0.157. The rigid baffle was made of
1/8 inch thick 2024-T6 aluminum. The flexible baffles were made of
Mylar of the following thicknesses: 0.002', 0.003'", 0.005' and

0.0075'". All tests were conducted at three excitational amplitudes

>

~
o
I

0.00152, 0.0035, 0.0067, and baffle depths ranging from

o

~

o]
il

0, to a baffle submergence of d /R = 0.4. The damping values
caces were computed from the force response curve by the

half-band-width technique.




LIQUID DAMPING
™

RIGID AND FLEXIRLE RAFFLFES

A. Rigid Baffle Damping

The first part of the test program was directed toward com-
paring the damping values obtained in the present 17. 75 inch dia-
meter tank to those values obtained in the 14.4 inch diameter tank
of Ref. (4). The comparison of these two different tests for three
excitational amplitudes is presented in Figure 2, from which it can
be seen that the results from the two tanks are in good agreement.
It should be noted that for the present tank no data was obtained at
baffle depths greater than d_/R = 0.2 at the large excitation ampli-
tude Xo/d = 0. 0067 because at the resonant frequency the liquid went
into a rotational type of sloshing. This did not occur in the previous

tests of Ref. {(4).

B. Flexible versus Rigid Baffles

A comparison of the damping ratio versus baffle depth for the
rigid and the various flexible baffles for a translation amplitude
X,/d =0.00152 is presented in Figure 3. At this value of excitation
amplitude the damping from the rigid baffle is slightly greater at
baffle depths of dg /R = 0 to approximately 0.025; however, for
greater baffle depths the various flexible baffles are seen to be more
effective.

A comparison of the relative damping (ratio of flexible baffle



damping to rigid baffle damping) for this translation amplitude, is
g Pingy ¥ ’

-

presented in Figure 4; the 0.002" and 0. 003" Mylar baffles appear

to be the most effective ones. No rotational slosh was encountered in
any of these tests; however, it is believed that for greater baffle
depths, ds /R > 0.4, rotational slosh would have occurred.

Figure 5 presents damping ratio versus baffle depth for the
various baffles, at a translation amplitude Xo/d = 0. 0035. It can be
noted that again the rigid baffle is more effective near the free sur-
face, but the flexible baffles become more effective at baffle depths
greater than Xo/d > 0.1. Also shown in this figure are the baffle
depths for which rotational slosh was encountered for the various
baffles. The 0.003' Mylar baffle was tested to a baffle depth
dS /R = 0.4 without encountering rotation; however, rotation was en-
countered with just a slight increase in baffle depth. The relative
damping, at this same excitation amplitude, is presented in Figure 6
from which it can be seen that the flexible baffles offer approximately
15 to 20 percent more damping than do the rigid baffles. No distinct
advantage can be seen from any one flexible baffle to another, at this
excitation amplitude, other than that the 0. 003" Mylar baffle suppress-
ed rotational sloshing to a greater depth.

Figure 7 presents damping ratio versus baffle depth for the
various baffles at a translation amplitude X_/d = 0. 0067. The results

near the free surface are similar to those for the smaller excitation



amplitudes. For all baffles, the damning produced at baffle depths
dg/R =0.05 to 0.1 was so great that the damping coefficient could
not be obtained from the force response with the half-band-width
technique. For this excitation amplitude the liquid went into rotation
at baffle depths d /R = 0. 25 for the rigid and various flexible baffles,
and at d /R = 0.30 for the 0.002" thick Mylar baffle. The relative
damping for this excitation amplitude is presented in Figure 8. It
may be noted that at baffle depths d /R = 0.2 the flexible baffles are
slightly better than the rigid baffles; however, at greater depths no
damping data for these baffles could be obtained because of the rota-
tional slosh.

It is questionable whether the flexible baffles would offer more
damping than the rigid baffles for large excitation amplitudes; however,
it is believed that their damping would still be at least comparable to
that of a rigid baffle.

An approach to the selection of the appropriate flexible baffle
for a given tank diameter is presented in the Appendix. For this parti-
cular tank, the 0. 003" Mylar baffle more nearly corresponds to the
recommendations of the Appendix. Figufe 9 shows the results ob-
tained at a fairly small translation excitation amplitude for the rigid
baffle and the 0. 003" Mylar baffle. For the rigid baffle no damping
values were computed at baffle depths less than dg /R = 0.05 since the

damping was out of the range of the half-band-width technique. At




ballle depths great xat 0. 05 the flexible baffle damping is approxi-
mately twice that of the rigid baffle.

A comparison of baffle width effect is presented in Figure 10.
It can be seen that the damping for the W/R = 0.157 baffle is much
greater than for the W/R = 0, 10 baffle. It should also be noted that
rotational slosh was encountered at shallower depths for the W/R = 0.10
baffle, particularly for the comparison of the two flexible baffles. For

both baffle widths, the flexible baffle damping is slightly greater than

for a rigid baffle.

C. Effect of Period and Flexibility Parameters

Stephens (Ref. 6) correlated his data by three dimensionless
parameters. The first was a period parameter, P = UT/W, where
U is the liquid velocity past the baffle, T is the period of the slosh-
ing oscillation, and W is the baffle width; this parameter also is
equal to the slosh height times the exponential function that accounts
for the baffle depth (Ref. 3) divided by the baffle width. The second
parameter was a flexibility parameter, F = (W/t)3 (1 —p,z) ( %%— )

where t is the baffle thickness, u is Poisson's ratio, p is the liquid

density, and E is the modulus of elasticity., The third parameter was

. . Y . . .
the relative damping _flex , where Y flex 15 the damping ratio as
Y rigid
.= = ~ ] 1 e . T ie the : . :
provided by a flexible baifle and rigid S the damping ratino provided

by a rigid baffle of the same width under similar conditions.




No period paranicter could be determined for shallow baffle
depths because of difficulties in defining and measuring the small
slosh heights then encountered. Also, for these depths the sloshing
mode for a ring baffled cylindrical tank appears to be a combination
of antisymmetric and symmetric sloshing. For baffle depths dg /R =
0.15 and greater, the first antisymmetric slosh becomes predomi-
nant and the period parameter can be computed from the measure-
ment of the slosh height. For the various flexible baffles tested,
four values of the flexibility parameters could be computed.

The data points were first plotted for each Mylar baffle and a
geometrically similar rigid baffle, as a function of damping ratio
versus period parameter. Figures 11, 12, 13 and 14 present these
various plots. For each baffle depth the damping ratio appears to
decrease almost linearly with a decrease in period parameter. Also,
the damping ratio decreases and the period parameter increases
with an increase of baiffle depth, for both the flexible and the rigid
baffles. It can also be noted that, for an equivalent excitation ampli-
tude, the period parameter for the rigid baffle is considerably greater
than that for a flexible baffle since the slosh heights were greater for
the rigid baffle.

To compare the relative damping of the flexible and rigid
baffles against a flexibility parameter, three period parameters were

selected and the relative damping determined from the damping ratio



versus pericd p

meter plots. Figures 15, 16, 17 and 18 present

the relative damping versus flexibility parameter for four baffle depths.
It can be seen from these four figures that for a period parameter
range P = 1.6 to 3.0, the flexible to rigid baffle relative damping

appears to be between 40 and 50 percent higher, for all values of

baffle flexibility parameter.



LIQUID RESONANT FREQUENCIES

The first sloshing mode frequency for a ring baffled cylindrical
tank is dependent on the baffle location below the liquid free surface
and on the translation amplitude of the tank. Shown in Figures 19, 20
and 21 are the first mode liquid resonant fre(juencies in terms of the

wzd

dimensionless parameter P where wz

is the liquid resonant fre-
quency squared, d is the tank diameter, and a is the axial accelera-
tion versus the ring baffle depth dS /R, for the three values of trans-
lation amplitude. From these figures it can be seen that the resonant
frequency is increased above that of a bare wall tank when the baffle
is very near the liquid free surface. As the baffle is submerged the
resonant frequency decreases; however, the higher resonant frequency
can be retained with an increase of tank translation amplitude. No
first mode liquid resonant frequency was noted between baffle depths
d /R =0.05 and 0.1 for the largest translation amplitude X /d=
0.0067. For baffle depths close to the free surface (less than half
the baffle width) the resonant frequency is well below that for a non-
baffled tank. As the baffle depth is continually increased the liquid
resonant frequency gradually increases and approaches that of a non-
baffled tank. For the smallest excitation amplitude Xo /d = 0.00152
the lowest liquid resonant frequencies were recorded at the shallow

depths; however, the bare wall liquid resonant frequencies were also

10
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approached at much shallower ba he larger excita-
tion amplitudes. For all excitation amplitudes where the baffle is at
the free surface, the most rigid baffle yielded the highest liquid reso-

nant frequency. For baffle depths just under the free surface the

lowest resonant frequency occurred for the more rigid baffles.

11
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In general, test results indicate that flexible ring baffles pro-
vide damping equal to or better than similar rigid baffles., The rela-
tive damping, (ratio of flexible baffle damping to rigid baffle damping)
varies from an approximate value of 2 for small tank amplitudes,

Xo/d 0. 00085, to a value slightly greater than 1 for tank amplitudes

X, /d

0.0067. For these series of tests, the more flexible baffles
provided the higher damping values and also maintained a more con-
stant liquid resonant frequency throughout the baffle depth range in-
vestigated.

Tests with a flexible (0. 0012" thick) aluminum baffle were
attempted for the greater tank amplitudes; however, tears occurred
around the baffle inner edge and the tests were discontinued. Tearing
of the baffle resulted from small initial nicks which occurred in cutting
the inner radius of the baffle.

There is no question but that flexible baffles can reduce baffle
weight by a considerable ‘amount; however, the properties of the
baffle material at cryogenic temperatures should be better known.

It may also be necessary to investigate the stresses at the baffle

inner edge to insure that tearing of the baffle does not occur.
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It seems reasonable to assume that the highest damping, at
least for large baffle submergence depths, will be given by a flexible
baffle whose natural frequency (for the cos 8 mode) in liquid is the
same as the sloshing natural frequency. (For maximum damping,
the damping force should lag the excitation by 90°, and this is the
phase angle between the excitation of an elastic structure and its
motion exactly at resonance. )

The frequency of the baffle was computed from the elastic
plate equation

DV ¥y = q
where y is the baffle displacement, D is the flexural rigidity, and

g is the loading. The loading is composed of the inertia of the baffle,

pbhi? (h is the baffle thickness and py the density of the baffle material),

and the apparent inertia of the liquid, which is approximated here by

the same inertia as that exerted on a rigid plate moving with the velo-

. 1 .
city of the flexible baffle at that point, pWy][ ln(viv)z] /2., Thus, if
4~ 9% T2
y =7 (r) cos® cosQ2t, DV y~92[1+Ma 1-(w) 17=0, where
o
QOZ = D/pth4 and M, = pW/pph. This equation is put into finite

difference form and solved by a matrix eigenvalue routine. The finite

difference equation is

{2} 5} - @ (M5} - o

15



Let the baffle width be broken up iniv N eguidistant intervals of width
A, i.e., NA = W. Let the start of the first interval be at the tank
wall-baffle intersection and call it n=0. Any other interval will then
be located at nA, 0<n<N.

Then, the elements of {M} are:

1
M =1+M, [W’-(na)%] /2

Mn,Z: 0 if n £.2.

The elements A 2z of the matrix {A} are defined in terms of

the following parameters cn,/

1 -1
Cn,n+2 = at - (R-nA)A3

4 2 1 3
nn+l - Tatt (R-nA)A3 - (R—nA)ZAZ - (R-nA)3A

6 2 3

Chn = A% Y (R-na)?A%? ~ (R-na)t

4 2 1 3

Con-1 = "a% " (R-na)a? “(R-na)2a? T (R-nA)’a

1 1
Chon+2 =A% t (R-nA)A3

Taking into account the boundary conditions on the baffle

(built-in at r =0, free at r =W) the elements of {A} are as follows:

16



[

+K+3-—V] [2K2+V] 3-v — ZKZ

2
_ K
A = C + 2C +
N, N N, N N, N+2{[ K° K(K-v)
2K%1v _ R-W
AREK-v)) ON,N+1, With K= "7}

K21 K +3-v

K+v

N,N-1 * 2CN, nt2 {[ k2 1 L-x]

[KZ—K+3-V]} c K2+ v
- K2 T ON,NHL T K-V

N, N-2 N,N-2 N, N+2

AN N+1 T AN, N+2

All other AN,[ are zero.

o

For n = N-1:

AN-1,N " Cn-1,N * On-1, N+
A
AN-1,N-2 7 ®N-1,N-2

All other AN—I,/ are zero.

3. For n=20:

All AO,[ are zero.

ZK2 + v

K(K-v) ]

[

N-1,N-1 - CONn-1,n-1 * ONn-1,Nt1 [ - 5]

AN-1,N=3 = CN-1,N-3



4, Feor n=1:

All Al,l are zero.

Ay g =0
Ay =0

82,2 7 C22
A2,3 7 C2.3
824 7 C2.4

All other AZ,I are zero

6. For 3<n<N-2:

An,n+2 = cn,n+2
An,n+l = Cn,n+1
| “‘n,n - Cn,“
An,n—l = Cn,n—l
An,n—Z = Cn,n—Z

All other An,l are zero.

Results of calculations using the previous frequency equation
are shown in Figure 22. As can be seen, the 0. 003" Mylar baffle

has a frequency quite close to the sloshing frequency.

18
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